Graphene nanoribbon devices at high bias

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene nanoribbon devices at high bias

We present the electron transport in graphene nanoribbons (GNRs) at high electric bias conduction. When graphene is patterned into a few tens of nanometer width of a ribbon shape, the carriers are confined to a quasi-one-dimensional (1D) system. Combining with the disorders in the system, this quantum confinement can lead into a transport gap in the energy spectrum of the GNRs. Similar to CNTs,...

متن کامل

Graphene nanoribbon field-effect transistor at high bias

Combination of high-mean free path and scaling ability makes graphene nanoribbon (GNR) attractive for application of field-effect transistors and subject of intense research. Here, we study its behaviour at high bias near and after electrical breakdown. Theoretical modelling, Monte Carlo simulation, and experimental approaches are used to calculate net generation rate, ionization coefficient, c...

متن کامل

Graphene at high bias:

Graphene and few-layer graphene at high bias expose a wealth of phenomena due to the high temperatures reached. With in-situ transmission electron microscopy (TEM) we observe directly how the current modifies the structure, and vice versa. In some samples, cracks propagate from the edges of the flakes, leading to the formation of narrow constrictions or to nanometer spaced gaps after breakdown....

متن کامل

A graphene nanoribbon memory cell.

S D C1 C2 Over the past few years there has been a surge of interest in graphene, a recently isolated [ 1 ] one-atom-thick layer of carbon atoms arranged in a honeycomb lattice. From the application point of view this interest has mainly been driven by the high carrier mobility of graphene [ 2–4 ] which enables fabrication of fi eld-effect transistors (FETs) with much smaller channel resistance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nano Convergence

سال: 2014

ISSN: 2196-5404

DOI: 10.1186/s40580-014-0005-7